Inorg. Chem. 2003, 42, 6130-6135

Synthesis and Structural Characterization of Novel Re(I) Tricarbonyl Complexes Anchored on a Phosphinoarylbenzylamine and a Phosphinoaryloxazoline Generated in Situ

Torsten Kniess, João D. G. Correia, Ângela Domingos, Elisa Palma, and Isabel Santos*

Departamento de Química, ITN, Estrada Nacional 10, 2686-953 Sacavém Codex, Portugal

Received April 7, 2003

Reduction of the amide or replacement of the hydroxyl by a bromide in 2-(diphenylphosphanyl)-*N*-(2-hydroxyethyl)benzamide (H_2PNO) yielded the compounds 2-(diphenylphosphanyl)-*N*-(2-hydroxyethyl)benzylamine (H_2CH_2PNO , 1) and *N*-(2-bromoethyl)-2-(diphenylphosphanyl)benzamide (HPNBr, 2), respectively. Compound 2 is obtained in low yield and, depending on the reaction conditions, is mixed with starting material or with a product which has been identified as 2-(2-diphenylphosphinophenyl)oxazoline (PPh₃oxaz, 3). Compounds 1 and 2 react with (NEt₄)₂[ReBr₃(CO)₃], leading to the complexes [Re(CO)₃(κ^2 -H₂CH₂PNO)Br] (4) and [Re(CO)₃(κ^2 -PPh₃oxazBr)] (5), fully characterized by ¹H and ³¹P NMR spectroscopy and X-ray crystallographic analysis. Complex 5 is the first example of a Re(I) tricarbonyl anchored on a phosphorus–oxazoline ligand, which has been generated during the course of complex formation. In the unexpected and unusual complex 5, the Re atom is stabilized by a bidentate 2-(2-diphenylphosphinophenyl)oxazoline, by a bromide, and by three facially arranged carbonyl groups. In complex 4, the carbonyl groups are also facially coordinated to the metal center and the other three remaining coordination positions are occupied by a bromide and by the bidentate (P, N) ligand 2-(diphenylphosphanyl)-*N*-(2-hydroxyethyl)benzylamine.

Introduction

There has been an increasing interest in the development of new specific radiopharmaceuticals based on the low oxidation states of rhenium and technetium, which arises mainly from the introduction of straightforward methods of conversion of $[MO_4]^-$ to the highly stable organometallic precursors *fac*- $[M(CO)_3(H_2O)_3]^+$ (M = Tc, Re) under aqueous conditions.¹⁻⁴ Several bifunctional chelating agents, which allow the simultaneous stabilization of the metallic center and attachment to relevant biomolecules, have been explored.⁵⁻¹⁴ However, further chelating agents are still needed in order to prepare complexes with different physi-

- * Author to whom correspondence should be addressed. E-mail: isantos@itn1.itn.pt.
- Schibli, R.; Schwarzbach, R.; Alberto, R.; Ortner, K.; Schmalle, H.; Dumas, C.; Egli, A.; Schubiger, P. A. *Bioconjugate Chem.* 2002, 13, 750.
- (2) Alberto, R.; Schibli, R.; Waibel, R.; Abram, U.; Schubiger, A. P. Coord. Chem. Rev. 1999, 190–192, 901.
- (3) Alberto, R.; Schibli, R.; Egli, A.; Schubiger, A. P.; Abram, U.; Kaden, T. A. J. Am. Chem. Soc. 1998, 120, 7987.
- (4) Alberto, R.; Ortner, K.; Wheatley, N.; Schibli, R.; Schubiger, A. P. J. Am. Chem. Soc. 2001, 123, 3135.
- (5) Alves, S.; Paulo, A.; Correia, J. D. G.; Domingos, Â.; Santos, I. J. Chem. Soc., Dalton Trans. 2002, 4714.
- 6130 Inorganic Chemistry, Vol. 42, No. 19, 2003

cochemical properties, an important issue for their in vivo stability and pharmacokinetics. The number of bifunctional P-containing ligands useful for the stabilization of the organometallic core *fac*- $[M(CO)_3(H_2O)_3]^+$ is still limited.^{15–17}

- (6) Garcia, R.; Xing, Y.-H.; Paulo, A.; Domingos, Â.; Santos, I. J. Chem. Soc., Dalton Trans. 2002, 4236.
- (7) Garcia, R.; Paulo, A.; Domingos, Â.; Santos, I.; Ortner, K.; Alberto, R. J. Am. Chem. Soc. 2000, 122, 11240.
- (8) Wald, J.; Alberto, R.; Ortner, K.; Candreia, L. Angew. Chem., Int. Ed. 2001, 40, 3062.
- (9) Egli, A.; Alberto, R.; Tannahil, L.; Schibli, R.; Abram, U.; Schaffland, A.; Waibel, R.; Tourwé, D.; Jeannin, L.; Iterbeke K.; Schubiger, P. A. J. Nucl. Med. **1999**, 40, 1913.
- (10) Alberto, R.; Schibli, R.; Schubiger, A. P.; Abram, U.; Pietzsch, H. J.; Johannsen, B. J. Am. Chem. Soc. 1999, 121, 6076.
- (11) Reisgys, M.; Wüst, F.; Alberto, R.; Schibli, R.; Schubiger, A. P.; Pietzsch, H.-J.; Spies, H.; Johannsen, B. *Bioorg. Med. Chem. Lett.* **1997**, *17*, 22243.
- (12) Hoepping, A.; Reisgys, M.; Brust, P.; Seifert, S.; Spies, H.; Alberto, R.; Johannsen, B. J. Med. Chem. 1998, 41, 4429.
- (13) La Bella, R.; Garcia-Garayoa, E.; Bähler, M.; Bläuenstein, P.; Schibli, R.; Conrath, P.; Tourwé, D.; Schubiger, P. A. *Bioconjugate Chem.* 2002, 13, 599.
- (14) Bernard, J.; Ortner, K.; Spingler, B.; Pietzsch, H.-J.; Alberto, R. *Inorg. Chem.* **2003**, *42*, 1014.
- (15) Kothari, K. K.; Gali, H.; Prabhu, K. R.; Pillarsetty, N.; Owen, N. K.; Katti, K. V.; Hoffman, T. J.; Volkert, W. A. Nucl. Med. Biol. 2002, 29, 83.

10.1021/ic034372v CCC: \$25.00 © 2003 American Chemical Society Published on Web 08/23/2003

Characterization of Novel Re Tricarbonyl Complexes

Chart 1. M(I) Tricarbonyl Complexes (M = $^{99m}Tc,\,Re)$ with H_2PNO and H_2PN_2

In our group, we have synthesized a new family of phosphine-containing ligands, and their coordination capabilities toward the *fac*-[M(CO)₃] and the [M(O)]³⁺ moieties (M = Re, ^{99m}Tc) have been explored.^{18–23} In the case of tricarbonyl complexes, we have shown that the bi(tri)dentate hetero-functionalized phosphines **H**₂**PNO** (2-(diphenylphosphanyl)-*N*-(2-hydroxyethyl)benzamide) and **H**₂**PN**₂ (*N*-(2-aminoethyl)-2-(diphenylphosphanyl)benzamide) react stoichiometrically with the synthon [M(CO)₃]⁺ (M = Re, ^{99m}Tc), yielding the complexes [M(CO)₃(κ^2 -H₂PNO)X] and [Re(CO)₃(κ^3 -HPN₂)], respectively (Chart 1).^{18,19}

By use of a triphenylphosphanyl-substituted benzamine, a reduced form of H₂PNO, the coordination behavior toward Re(I) should change, and by conversion of the hydroxyl function of the H₂PNO, which is not involved in the complexation, into a more reactive group, the coupling to bioactive molecules would be easier. With this aim, we synthesized the 2-(diphenylphosphanyl)-N-(2-hydroxyethyl)benzylamine (H₂CH₂PNO, 1) and the N-(2-bromo)-2-(diphenylphosphanyl)benzamide (HPNBr, 2). Herein, we report on the synthesis and characterization of these new compounds as well as on the synthesis and structural characterization of the novel complexes fac-[Re(CO)₃(κ^2 - H_2CH_2PNOBr] (4) and fac-[Re(CO)₃(κ^2 -PPh₃oxaz)Br] (5). Complexes 4 and 5 were obtained by reacting the organometallic precursor $[NEt_4]_2[Re(CO)_3Br_3]$ with 1 and 2, respectively. The unusual and unexpected complex 5 is the first Re complex anchored on a phosphorus-oxazoline ligand, which has been generated during the complex formation.

Experimental Section

General Techniques. All chemicals were of reagent grade. **H₂PNO** and $(NEt_4)_2[ReBr_3(CO)_3]$ were prepared as previously described.^{23,24} Borane dimethyl sulfide complex and PBr₃ were

- (16) Gali, H.; Hoffman, T. J.; Sieckman, G. L.; Owen, N. K. *Bioconjugate Chem.* 2001, *12*, 354.
- (17) Schibli, R.; Katti, K. V.; Volkert, W. A.; Barnes, C. L. Inorg. Chem. 2001, 40, 2358.
- (18) Correia, J. D. G.; Domingos, Â.; Santos, I.; Alberto, R.; Ortner, K. *Inorg. Chem.* 2001, 40, 5147.
- (19) Correia, J. D. G.; Santos, I.; Alberto, R.; Ortner, K.; Spies, H.; Drews, A. J. Labeled Compd. Radiopharm. 2001, 44, S507.
- (20) Correia, J. D. G.; Domingos, A.; Paulo, A.; Santos, I. J. Chem. Soc., Dalton Trans. 2000, 2477.
- (21) Correia, J. D. G.; Domingos, Â.; Santos, I.; Spies, H. J. Chem. Soc., Dalton Trans. 2001, 2245.
- (22) Fernandes, C.; Correia, J. D. G.; Gano, L.; Santos, I.; Seifert, S.; Syhre, R.; Spies, H. J. Labeled Compd. Radiopharm. 2001, 44, S518.
- (23) Correia, J. D. G.; Domingos, Â.; Santos, I. Eur. J. Inorg. Chem. 2000, 1523.
- (24) Alberto, R.; Schibli, R.; Egli, A.; Schubiger, P. A.; Herrmann, W. A.; Artus, G.; Abram, U.; Kaden, T. A. J. Organomet. Chem. 1995, 493, 119.

purchased from Aldrich and used without further purification. The reactions were run in air unless otherwise indicated. ¹H and ³¹P NMR spectra were recorded on a Varian Unity 300 MHz spectrometer; ¹H chemical shifts were referenced with the residual solvent resonance relative to tetramethylsilane, and the ³¹P chemical shifts were measured with external 85% H₃PO₄ solution as reference. Chemical shifts are given in ppm. The NMR samples were prepared in CDCl₃ or (CD₃)₂SO. Infrared spectra were recorded in the range 4000–200 cm⁻¹ on a Perkin-Elmer 577 spectrometer using KBr pellets. Elemental analyses were performed on a Perkin-Elmer automatic analyzer.

2-(Diphenylphosphanyl)-N-(2-hydroxyethyl)benzylamine (H₂CH₂PNO) (1). To a solution of H₂PNO (0.50 g, 1.4 mmol) in dry toluene (40 mL), 1 M borane dimethyl sulfide solution in dichloromethane (2.8 mL, 2.8 mmol) was added at room temperature, under a nitrogen atmosphere with stirring. The solution was allowed to react for 30 min at room temperature and then refluxed for 24 h under a nitrogen atmosphere with stirring. The mixture was cooled, 20 mL of a 10% NaHCO3 solution was added, and the mixture was refluxed again for 30 min. The solvents were evaporated in a vacuum to dryness, and the residue was treated with 10 mL of water and extracted with dichloromethane (3 \times 20 mL). The organic phases were collected, dried over MgSO₄, and filtered, and the solvent was evaporated. The residue was chromatographed on a silica gel column with 95% chloroformmethanol to afford a colorless oil (0.282 g, 60%). IR (cm^{-1}): 3000, 1580, 1640, 1470, 1430, 740, 690. ¹H NMR (δ, CDCl₃): 7.45 (m, 1H, arom.), 7.38-7.20 (m, 12H, arom.), 6.95 (m, 1H, arom.), 4.03 (s, 1H, CH₂) 3.53 (s, 2H, CH₂), 2.72 (tr, 2H, CH₂). ³¹P NMR (δ , CDCl₃): -15.1 ppm. ¹H NMR (δ , [(CD₃)₂SO]): 7.53 (m, 1H, arom.), 7.39-7.16 (m, 12H, arom), 6.75 (m, 1H, arom.), 4.41 (s, 1H, OH) signal disappears after shaking with D₂O, 3.83 (s, 2H, CH₂), 3.31 (tr, 2H, CH₂), 2.45 (tr, 2H, CH₂). Anal. Calcd for C₂₁H₂₂-NOP·CH₂Cl₂: C, 62.87; H, 5.76; N, 3.33. Found: C, 63.68; H, 5.90; N, 3.33.

N-(2-Bromoethyl)-2-(diphenylphosphanyl)benzamide (HPN-Br) (2). To a stirred solution of H₂PNO (0.35 g, 1 mmol) in chloroform (15 mL), PBr₃ (0.093 mL, 1 mmol) was added, and the mixture was allowed to reflux for 24 h. After cooling, the mixture was treated with 10% NaHCO3 solution (10 mL) in chloroform (40 mL). The organic phase was collected, dried over MgSO₄, and filtered, and the solvent was removed. The residue was chromatographed on a silica gel column with 95% dichloromethane-ethyl acetate to afford a white solid identified as H₂CPNBr (0.091 g, 22%). IR (cm⁻¹, KBr): 3300 (NH); 1640 (C=O); 1550, 1430 (C=C); 1330, 1280, 750, 700, 510. ¹H NMR (δ, CDCl₃): 7.67 (m, 1H, arom.), 7.42–7.27 (m, 12H, arom.), 6.99 (m, 1H, arom.), 6.48 (s, br, 1H, NH), 3.71 (q, 2H, CH₂), 3.36 (tr, 2H, CH₂). ³¹P NMR (δ, CDCl₃): -10.5 ppm. Anal. Calcd for C₂₁H₁₉BrNOP: C, 61.16; H, 4.61; N, 3.39. Found: C, 61.65; H, 4.41; N, 3.34.

2-(2-Diphenylphosphinophenyl)oxazoline (PPh₃oxaz) (3). To a stirred solution of **H₂PNO** (0.350 g, 1 mmol) in chloroform (15 mL), PBr₃ (0.186 mL, 2 mmol) was added, and the mixture refluxed for 1 h. After treatment with 10% NaHCO₃ (10 mL) and chloroform (40 mL), the organic phase was separated, dried over MgSO₄, and filtered, and the solvent was removed. The residue was purified by chromatography on a silica gel column with 95% dichloromethane– ethyl acetate to afford two fractions, which correspond to **HPNBr** (0.040 g, 9.7% yield) and **PPh₃oxaz** (0.088 g, 26% yield). The former compound was obtained as an oil that crystallized to a white solid. IR (cm⁻¹, KBr): 1640 (C=N); 1425, 1340, 1080, 1040, 940, 740, 690. ¹H NMR (δ , CDCl₃): 7.92 (m, 1H, arom.), 7.41–7.29 (m, 12H, arom.), 6.91 (m, 1H, arom.), 4.13 (tr, 2H, CH₂), 3.81 (tr, 2H, CH₂). ³¹P NMR (δ , CDCl₃): – 4.00 ppm. Anal. Calcd for C₂₁H₁₈NOP: C, 76.13; H, 5.44; N, 4.23. Found: C, 75.78; H, 5.78; N, 4.19.

[**Re**(**CO**)₃(k^2 -**H**₂**CH**₂**PNO**)**Br**] (4). A solution of **H**₂**CH**₂**PNO** (0.060 g, 0.18 mmol) in methanol (4 mL) was added to a solution of (NEt₄)₂[ReBr₃(CO)₃] (0.138 g, 0.18 mmol) in methanol (10 mL) at room temperature. After refluxing for 5 h, the mixture was cooled and the solvent evaporated to dryness. The obtained residue was chromatographed on a silica gel column with 90% dichloromethane–ethyl acetate. Complex 4 was obtained as a white solid (0.05 g, 41% yield). IR (cm⁻¹, KBr): 2020, 1920, 1880 (C=O); 1430 (C=C); 760, 690, 530. ¹H NMR (δ , [(CD₃)₂SO]): 7.62–7.48 (m, 9H, arom.), 7.35–7.21 (m, 4H, arom.), 6.70 (m, 1H, arom.), 5.13 (tr, 1H, OH) signal disappears by shaking with D₂O, 4.15 (m, 1H, CH), 4.07 (m, 1H, CH), 3.80 (m, 1H, CH), 3.57 (m, 1H, CH), 2.84 (m, 2H, CH₂). ³¹P NMR (δ , CDCl₃): +11.8 ppm. Anal. Calcd for C₂₄H₂₂BrNO₄PRe: C, 42.05; H, 3.23; N, 2.04. Found: C, 41.84; H, 2.89; N, 1.83.

[**Re**(**CO**)₃(k^2 -**PPh_3oxaz**)**Br**] (5). A solution of **HPNBr** (0.062 g, 0.150 mmol) in methanol was added to a solution of (NEt₄)₂-[ReBr₃(CO)₃] (0.115 g, 0.150 mmol) in methanol (10 mL), and the mixture was refluxed overnight. After cooling, evaporation of the solvent afforded a residue, which was purified by chromatography on a silica gel column with 100% dichloromethane. The complex (0.090 g, 88%) was obtained as a pale-yellow solid. IR (cm⁻¹, KBr): 2010, 1910, 1870 (C=O); 1610, 1470 (C=C); 1430, 1370, 1950, 1120, 1090, 1050, 730, 690, 540. ¹H NMR (*δ*, [(CDC₃)₂SO]): 8.13 (m, 1H, arom.), 7.72–7.55 (m, 10H, arom.), 7.14 (m, 2H, arom.), 6.80 (m, 1H, arom.), 4.62 (m, 2H, CH₂), 4.26 (m, 1H, CH), 4.12 (m, 1H, CH). ³¹P NMR (*δ*, [(CD₃)₂SO]): +9.8. Anal. Calcd for C₂₄H₁₈BrNO₄PRe: C, 42.29; H, 2.64; N, 2.05. Found: C, 41.84; H, 2.68; N, 1.88.

X-ray Crystallographic Analysis. Colorless crystals of 4 and 5, suitable for X-ray diffraction analysis, were obtained from slow evaporation of methanolic solutions and were fixed inside thinwalled glass capillaries. Data were collected at room temperature on an Enraf-Nonius CAD4-diffractometer with graphite-monochromatized Mo K α radiation, using a $\omega - 2\theta$ scan mode. Unit cell dimensions were obtained by least-squares refinement of the setting angles of 25 reflections with $16.3 < 2\theta < 31.9^{\circ}$ for 4 and 15.8 < $2\theta < 27.8^{\circ}$ for 5. A summary of the crystallographic data is given in Table 1. Data were corrected for Lorentz and polarization effects and for absorption by empirical corrections based on Ψ scans.²⁵ The heavy atom positions were located by Patterson methods using SHELXS-97.²⁶ The remaining atoms were located by sucessive difference Fourier techniques and refined by least-squares refinements on F² using SHELXL-97.²⁷ All the non-hydrogen atoms were refined with anisotropic thermal motion parameters, and the contribution of the hydrogen atoms was included in calculated positions. Atomic scattering factors and anomalous dispersion terms were taken from ref 25. The drawings were made with ORTEP-3.28

Results and Discussion

To broaden the type of phosphine-containing ligands useful for stabilizing the $[M(CO)_3]^+$ core (M = Re, Tc), the basic

(28) Farrujia, L. J. J. Appl. Crystallogr. 1997, 30, 565.

Table 1. Crystal Data for $[Re(CO)_3(\kappa^2-H_2CH_2PNO)Br]$ (4) and $[Re(CO)_3(\kappa^2-PPh_3oxaz)Br]$ (5)

complex	4	5
empirical formula	$C_{24}H_{22}BrNO_4PRe$	$C_{24}H_{18}BrNO_4PRe$
crystal size, mm ³	$0.36 \times 0.36 \times 0.14$	$0.72 \times 0.34 \times 0.17$
formula weight	685.51	681.47
crystal system	monoclinic	triclinic
space group	$P2_{1}/c$	P1
a, Å	11.2777(10)	11.2502(11)
<i>b</i> , Å	10.3652(8)	14.7436(15)
<i>c</i> , Å	20.7153(17)	15.029(2)
α, deg		71.370(11)
β , deg	105.742(7)	88.316(10)
γ, deg		87.786(8)
volume, Å ³	2330.7(3)	2360.0(5)
Ζ	4	4
$\rho_{\rm calc.}$, g cm ⁻³	1.954	1.918
μ (Mo K α), mm ⁻¹	7.028	6.940
no. reflns measd	5866	12195
no. unique reflns	5590 $[R_{int} = 0.0350]$	$11785 [R_{int} = 0.0239]$
R1 ^a	0.0439	0.0590
$wR2^b$	0.0887	0.1258

^{*a*} R1 = $\sum ||F_0| - |F_c|| / \sum |F_0|$. ^{*b*} wR2 = $[\sum (w(F_0^2 - F_c^2)^2) / \sum (w(F_0^2)^2)]^{1/2}$. The values were calculated for data with $I > 2\sigma(I)$.

Scheme 1. Preparation of H_2CH_2PNO (1) and HPNBr (2)^a

^{*a*} Key: (*i*) toluene, reflux; (*ii*) PBr₃, (1 equiv), CHCl₃, reflux, 24 h; (*iii*) PBr₃ (2 equiv), CHCl₃, reflux, 18 h; (*iv*) PBr₃ (2 equiv), CHCl₃, reflux, 1 h.

framework of the previously described H₂PNO ligand was changed following two different approaches. One comprises the reduction of the amide group to a secondary amine and the other the substitution of the hydroxyl group by a bromide for an easier coupling to biomolecules. As depicted in Scheme 1, H₂PNO reacts with BH₃·SMe₂ or with PBr₃, leading to the new compounds H₂CH₂PNO (1) and HPNBr (2), respectively. After appropriate workup and purification by chromatography on a silica gel column, 1 was obtained as a colorless oil and 2 as a white solid. The synthesis of H₂CH₂PNO in 60% yield was more or less straightforward, but in the case of HPNBr, prepared by nucleophilic substitution of the hydroxyl group with PBr₃, the reaction was not so clean. In fact, when H₂PNO reacted with an equimolecular amount of PBr₃ in refluxing CHCl₃ for 24 h, the alkyl bromide ligand is formed, but in a very low yield (22%), being a significant amount of unreacted starting

⁽²⁵⁾ Fair, C. K. MOLEN; Enraf-Nonius: Delft, The Netherlands, 1990.

⁽²⁶⁾ Sheldrick, G. M. SHELXS97; University of Göttingen: Göttingen, Germany, 1997.

⁽²⁷⁾ Sheldrick, G. M. SHELXL97; University of Göttingen: Göttingen, Germany, 1997.

Characterization of Novel Re Tricarbonyl Complexes

Table 2. ³¹ P NMR and IR D

compound	³¹ P (ppm)	$IR(cm^{-1})$	ref
H ₂ PNO	-9.9^{a}	1630, v(CO)	23
$H_2CH_2PNO(1)$	-15.1^{a}		С
HPNBr (2)	-10.5^{a}	1640, v(CO)	С
H ₂ P(O)NBr	$+36.7^{a}$		С
PPh ₃ oxaz (3)	-4.0^{a}	1640, v(CN)	С
$[\text{Re}(\text{CO})_3(\kappa^2-\text{H}_2\text{PNO})\text{Br}]$	$+11.8^{a}$	1598, v(CO)	18
$[\text{Re}(\text{CO})_3(\kappa^2-\text{H}_2\text{CH}_2\text{PNO})\text{Br}] (4)$	$+11.8^{b}$		С
$[\text{Re}(\text{CO})_3(\kappa^2 - \text{PPh}_3 \text{oxaz})\text{Br}]$ (5)	$+9.8^{b}$	1610, v(CN)	С

^a CDCl₃. ^b [(CD₃)₂SO]. ^c This work.

material recovered during workup. If more harsh reaction conditions are applied (2-fold molar excess of PBr₃, refluxing chloroform, overnight reaction), the main isolated product (77%) was identified as the phosphine oxide derivative **HP(O)NBr**, based on ¹H and ³¹P NMR spectroscopy (³¹P NMR: +36.7 ppm). In a third attempt, using a 2-fold molar excess of PBr₃ in refluxing chloroform for 1 h, the desired alkyl bromide **HPNBr** (2) ligand was isolated in 9.7% yield. However, a side product, which has been identified as 2-(2diphenylphosphinophenyl)oxazoline (**PPh₃oxaz**), was also isolated (Scheme 1).

After separation by chromatography on a silica gel column, **PPh₃oxaz** was recovered as a white solid in 26% yield. The 2-(2-diphenylphosphinophenyl)oxazoline (**PPh₃oxaz**) is a compound already described but by a quite different synthetic method. It has been obtained through a two-step synthetic pathway, preparation of 2-(2-fluorophenyl)-oxazoline by onepot condensation of the 2-fluorobenzoic acid with the corresponding amino alcohol followed by nucleophilic substitution with LiPPh₂.²⁹

In our case, the compound **HPNBr** is certainly formed in a first step, but a deprotonation of the amide by the PBr_3 Lewis base promotes an intramolecular nucleophilic attack of the C=O group to the terminal ethylenic carbon atom.

Compounds 1, 2, and 3 were characterized by ³¹P NMR and ¹H NMR spectroscopy, elemental analysis, and IR spectroscopy. In the IR spectrum of H₂CH₂PNO (1), no stretching bands in the range 1630–1640 cm⁻¹ are found, confirming the absence of the carbonyl amide function.²³ For compound **HPNBr** (2), the ν (C=O) stretching vibration, assigned to the amide function, appears at 1640 cm⁻¹, and for the oxazoline **PPh₃oxaz** a band, which appears also in this range (1640 cm⁻¹), has been attributed to the ν (C=N) stretching vibration of the ring.³⁰

As shown in Table 2, the ³¹P NMR spectra of H_2CH_2PNO (1), **HPNBr** (2), and **PPh₃oxaz** (3) show only one peak at -15.1, -10.5, and -4 ppm, respectively. As expected, the chemical shift of the resonance found for 2 compares well with the value found for H_2PNO , but the ³¹P NMR resonances found for 1 and 3 are, respectively, high-field and low-field shifted relative to the nonreduced form (H_2PNO : $\delta = -9.9$). The more and less shielded P atoms, respectively, in 1 and 3 are due to the absence of the electron

Scheme 2. Preparation of the Complexes 4 and 5.4

^a Key: (i) Reflux, 5 h; (ii) reflux, 18 h.

withdrawing carbonyl group in 1 and to the presence of the heterocycle in complex 3, which certainly promotes a significant electron delocalization.

In the ¹H NMR spectrum of **H**₂**CH**₂**PNO** ([(CD₃)₂SO]), the most characteristic peaks are two singlets at $\delta = 4.41$ and 3.83, assigned, respectively, to the OH group and to the new methylenic protons. The ¹H NMR spectrum of **HPNBr** agrees with the formulation, and no significant differences can be observed in the overall pattern when compared to that of the **H**₂**PNO** starting material. Unlike the **HPNBr** ligand, where a broad singlet assigned to the NH group (δ = 6.48) together with a quartet (δ = 3.71) and a triplet signal (δ = 3.36) for the CH₂ groups appear in the ¹H NMR spectrum (CDCl₃), the cyclic oxazoline **PPh₃oxaz** presents in the same solvent two triplets of equal intensity (δ = 4.13, 3.81) for the CH₂ protons of the heterocycle, and as expected, no resonance assigned to the NH group could be found.

The Re(I) tricarbonyl complex [Re(CO)₃(κ^2 -H₂CH₂PNO)-Br] (**4**) was obtained in moderate yield (41%) by stoichiometric reaction of the precursor (NEt₄)₂[ReBr₃(CO)₃], in refluxing methanol for 5 h, with **H₂CH₂PNO** (**1**) (Scheme 2). Compound **4** is air and moisture stable, being soluble in MeOH and halogenated solvents and insoluble in water. Characterization of the complex was achieved by the usual analytical techniques, including X-ray diffraction analysis.

The Re(I) tricarbonyl complex [Re(CO)₃(κ^2 -PPh₃oxaz)-Br] (**5**) was unexpectedly obtained in high yield (88%) as a yellow solid by refluxing an analytically pure sample of **HPNBr**, with (NEt₄)₂[ReBr₃(CO)₃] in methanol. Compound **5** was characterized by the usual analytical techniques; however, unambiguous evidence for its final structure was only achieved by X-ray diffraction analysis. In fact, there was no complex formed with a free bromoethyl side chain, and the rhenium complex contained a 2-aryloxazoline ligand, as depicted in Scheme 2.

Since the bromine-substituted ligand **HPNBr** was undoubtedly used as starting material, it must be assumed that the cyclization of the ligand has occurred in situ during complexation, most likely by the mechanism displayed in Scheme 3.

In this mechanism, we propose the formation of an intermediate (I), which is analogous to the previously isolated

⁽²⁹⁾ Peer, M.; Jong, J. C.; Kiefer, M.; Langer, T.; Rieck, H.; Schell, H.; Sennhenn, P.; Sprinz, J.; Steinhagen, H.; Wiese, B.; Helmchen, G. *Tetrahedron* **1996**, *52*, 7547.

⁽³⁰⁾ Gómez, M.; Muller, G.; Rocamora, M. Coord. Chem. Rev. 1999, 193– 195, 769.

Scheme 3. Proposed Mechanism for the Formation of Complex 5

 $[\text{Re}(\text{CO})_3(\kappa^2-\text{H}_2\text{PNO})\text{Br}]$ complex.¹⁸ The simultaneous effect of coordination of the ligand to the metal center and the presence of an electron withdrawing group in the ethyl chain (Br) promotes the deprotonation of the amide and subsequent nucleophilic attack of the carbonyl group to the terminal ethylenic carbon atom, with formation of the cyclic oxazoline group (II). Intramolecular rotation of the oxazoline residue around the C–C bond followed by coordination of the nitrogen atom to the metal yields then complex **5**. As far as we are aware, no Re tricarbonyl complex anchored by a phosphorus oxazoline bidentate ligand has been described and no examples exist of in situ generation of this type of ligands during d-transition-complex formation.

Strong ν (CO) stretching bands appear in the IR spectra of **4** (2020, 1920, and 1880 cm⁻¹) and **5** (2010, 1910, and 1870 cm⁻¹), these values being within the range normally found for other complexes with the moiety *fac*-Re(CO)₃.^{1–23} The coordination of the phosphines is also confirmed by two strong absorption bands at ca. 730 and 690 cm⁻¹, associated with the C–H and C–C out-of-plane bending vibrations of monosubstituted benzene rings.^{18,23} For compound **5**, a strong band appears at 1610 cm⁻¹, which has been attributed to the ν (C=N) stretching. This band is shifted toward lower frequency ($\Delta = 30$ cm⁻¹) relative to the free **PPh₃oxaz** (**3**), which is in accordance with the general trend observed for other metal–oxazoline complexes.³⁰

The ¹H NMR spectrum of **4** in [(CD₃)₂SO] shows four multiplets, integrating for one proton each, at 4.15, 4.07, 3.80, and 3.57 ppm and one multiplet of intensity 2 at $\delta = 2.84$. The four multiplets of intensity 1 were assigned to the four diastereotopic methylenic protons near the coordinated amine, and the resonance at 2.84 ppm was attributed to the

Figure 1. ORTEP drawing of complex **4**. Thermal ellipsoids are drawn at the 40% probability level.

methylenic protons near the hydroxyl group. A signal at 5.13 ppm, which disappears after treatment with D₂O, was attributed to the OH proton. The ³¹P NMR spectrum shows only one singlet at +11.8 ppm, downfield shifted relative to the free compound **H₂CH₂PNO** ($\Delta = 26.9$ ppm), confirming the coordination to the metal.

The ¹H NMR spectrum of **5** in [(CD₃)₂SO] shows one multiplet for a CH₂ group ($\delta = 4.62$) and two multiplet signals, integrating for one proton each, for the other two protons of the oxazoline fragment ($\delta = 4.26, 4.12$). The ³¹P NMR signal for **5** appears at +9.8 ppm, downfield shifted relative to the free **PPh₃oxaz** (**3**) ($\Delta = 13.8$ ppm).

Despite the increasing interest on the coordination chemistry of phosphino-oxazoline ligands, mainly as chiral auxiliaries in transition-metal-catalyzed asymmetric organic syntheses, not many examples of Re complexes with this type of ligand have been described.^{30,31} To the best of our knowledge, **5** is the first example of a Re complex anchored on a bidentate phosphorus-oxazoline ligand. Concerning the Re(I), two families of complexes of the type [ReX(CO)₃L] (X = halide) have been described, one in which L = 2-methylthiomethyl-4-(S)-methyl-1,3-oxazoline³² and another in which L = 2,6-bis[(4S)-isopropyloxazoline-2-yl]pyridine).^{33,34} Concerning M(V) (M = Re, Tc), neutral monooxo complexes of the type [M(O)XL₂] (X = halide; HL = 2-(2'hydroxyphenyl)-2-oxazoline) and the cationic monooxo [Re(O)(H₂O)L₂]⁺ have been described.^{35,36}

Description of the Structures. The structures of complexes $[\text{Re}(\text{CO})_3(\kappa^2-\text{H}_2\text{CH}_2\text{PNO})\text{Br}]$ (4) and $[\text{Re}(\text{CO})_3(\kappa^2-\text{PPh}_3\text{oxaz})$ Br] (5) consist of discrete mononuclear units. Complex 5 possesses two molecules per asymmetric unit which are crystallographically independent but chemically equivalent. ORTEP views of the molecular structures of 4 and 5 are given in Figures 1 and 2, respectively. Selected bond distances and angles are given in Tables 3 and 4.

In both compounds, the Re atom is six-coordinated, displaying a slightly distorted octahedral coordination geometry. The three carbonyl ligands occupy one triangular face of the polyhedron; the other three remaining coordination sites are occupied by the bromide and by the phosphorus and nitrogen atoms of the bidentate ligands H₂CH₂PNO and PPh₃oxaz in 4 and 5, respectively. In both complexes, the axial

- (31) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed. 2001, 40, 680.
- (32) Heard, P. J.; Tocher, D. A. J. Organomet. Chem. 1997, 549, 295.
- (33) Heard, P. J.; Tocher, D. A. J. Chem. Soc., Dalton Trans. 1998, 2169.
- (34) Heard, P. J.; Jones, C. J. Chem. Soc., Dalton Trans. 1997, 1083.
- (35) Shuter, E.; Hoveyda, H. R.; Karunaratne, V.; Rettig, S. J.; Orvig, C. *Inorg. Chem.* **1996**, *35*, 368.
- (36) Arias, J.; Newlands, C. R.; Abu-Omar, M. M. Inorg. Chem. 2001, 40, 2185.

Figure 2. ORTEP drawing of molecule 1 of complex 5. Thermal ellipsoids are drawn at the 30% probability level.

Table 3. Selected Bond Lengths (Å) and Angles for (deg) for $[\text{Re}(\text{CO})_3(\kappa^2-\text{H}_2\text{CH}_2\text{PNO})\text{Br}]$ (4)

Re-C(1) Re-C(2) Re-C(3)	1.942(8) 1.892(9) 1.927(9)	Re-Br Re-N Re-P	2.6267(9) 2.275(6) 2.4661(18)
C(2)-Re-P(1) C(3)-Re-P(1) C(1)-Re-P(1) N(1)-Re-P(1) C(2)-Re-Br(1)	90.2(3) 92.4(2) 176.6(3) 88.27(16) 173.3(3)	$\begin{array}{l} C(3) - Re - Br(1) \\ C(1) - Re - Br(1) \\ N(1) - Re - Br(1) \\ P(1) - Re - Br(1) \end{array}$	94.4(3) 83.6(3) 81.68(17) 93.01(5)

Table 4. Selected Bond Lengths (Å) and Angles (deg) for Molecule 1 of $[\text{Re}(\text{CO})_3(\kappa^2-\text{PPh}_3\text{Oxaz}) \text{ Br}]$ (**5**)^{*a*}

Re(1)-C(1) Re(1)-C(2) Re(1)-C(3)	1.914(10) 1.976(11) 2.034(11)	Re(1)-N(1) Re(1)-P(1) Re(1)-Br(1)	2.193(8) 2.446(2) 2.6093(13)
$\begin{array}{l} C(1)-Re(1)-N(1)\\ C(2)-Re(1)-N(1)\\ C(3)-Re(1)-N(1)\\ C(1)-Re(1)-P(1)\\ C(2)-Re(1)-P(1)\\ C(3)-Re(1)-P(1)\\ N(1)-Re(1)-P(1) \end{array}$	178.2(4) 94.4(4) 90.3(4) 97.2(3) 169.4(3) 96.8(3) 81.6(2)	$\begin{array}{c} C(1)-Re(1)-Br(1)\\ C(2)-Re(1)-Br(1)\\ C(3)-Re(1)-Br(1)\\ N(1)-Re(1)-Br(1)\\ P(1)-Re(1)-Br(1)\\ Re(1)-N(1)-C(7)\\ Re(1)-P(1)-C(12) \end{array}$	92.2(3) 85.6(3) 178.4(3) 89.1(2) 84.52(7) 132.1(6) 108.5(3)

 $^{a}\,\mathrm{The}$ structural parameters for molecule 2 are given in Supporting Information.

positions of the octahedron are defined by the phosphorus atom of the neutral and bidentate heterofunctionalized phosphines and by one carbonyl ligand. Deviations from the idealized octahedral geometry can be seen in the bond angles around the Re atom (Tables 3 and 4). The cis and trans bond angles are in the ranges $81.7-94.4^{\circ}$ and $173.3-176.6^{\circ}$ and 81.6-97.2 and $169.4-178.4^{\circ}$ in **4** and **5**, respectively. Probably due to steric and/or electronic restrictions imposed by the oxazoline moiety, compound **5** presents a higher distortion than **4**, the values found for this one being comparable with the values previously found for the analogous [Re(CO)₃(κ^2 -H₂PNO)Br].¹⁸

Although there are different existing d-transition complexes anchored on polydentate nitrogen, oxygen, or phos-

phorus-oxazoline ligands, to the best of our knowledge, 5 is the only Re(I) complex anchored on a phosphorusoxazoline ligand and, therefore, a comparison of structural data is difficult. However, concerning the structural parameters of the oxazoline moiety in complex 5, they are comparable to the corresponding values found in other structurally characterized d-transition complexes.^{30–32} For molecules 1 and 2, the bite angles N(1)-Re(1)-P(1), 81.6°, and N(2)-Re(2)-P(2), 83.6° , fall in the range $80-90^\circ$ where the bite angles N-M-Y (Y = C, N, O, S, P) of other oxazoline complexes with five-, six-, and seven-membered cycles normally appear.^{30,31} The Re-N-C bond angle is large $(132.1(6)^{\circ}$ in molecule 1 and $133.0(7)^{\circ}$ in molecule 2) and out of the range 112.8-125.79° normally found in other oxazoline complexes, certainly due to the steric restrictions imposed by the diphenylphosphine moiety.

The relatively strong sigma-donor character of the phosphorus–oxazoline ligand compared with the phosphines **H**₂**PNO** and **H**₂**CH**₂**PNO** explains the longer Re–CO bond distances in 5 (molecule 1, 1.975(11) Å; molecule 2, 1.943(16) Å) than in 4 (1.920(9) Å) and also in the previously described [Re(CO)₃Br(κ^2 -H₂PNO)] (1.922(8) Å).¹⁸

The Re–P bond distance found in **5** (2.440(2) Å) is slightly shorter than the corresponding bond length in **4** (2.4661(18) Å), certainly due to the presence of the oxazoline moiety, which forms with the metal a strong Re–N bond (2.192(8) Å).

Concluding Remarks

We have synthesized and characterized a new family of bidentate P, N donor ligands (H_2CH_2PNO , HPNBr) and studied their coordination capabilities toward the *fac*-[Re(CO)₃]⁺ moiety. By reaction of [(NEt₄)₂[ReBr₃(CO)₃] with H_2CH_2PNO , the novel complex [Re(CO)₃Br(κ^2 - H_2CH_2PNO)] (4) has been formed. Unexpectedly, the same reaction with HPNBr led to [Re(CO)₃Br(κ^2 -PPh₃oxaz)] (5). Compound 5 is the first example of a Re(I) complex anchored on a phosphorus—oxazoline ligand, generated during the course of complex formation. All the compounds were fully characterized by ¹H and ³¹P NMR spectroscopy and, in the case of 4 and 5, by X-ray crystallographic analysis.

Acknowledgment. Torsten Kniess and Elisa Palma thank the Fundação para a Ciência e Tecnologia for a PRAXIS XXI postdoctoral fellowship and a BIC Grant, respectively. This work has been supported by POCTI/QUI/35423/1999, by a bilateral project (ICCTI/DAAD), and by COST Action B12.

Supporting Information Available: Crystallographic data for the structures **4** and **5**, in CIF format, can be obtained free of charge via the Internet at http://pubs.acs.org.

IC034372V